
NI Switch Executive Python API
Documentation

Release 1.4.7

NI

Dec 15, 2023

DOCUMENTATION

1 About 1
1.1 Support Policy . 1

2 Contributing 3

3 Support / Feedback 5

4 Bugs / Feature Requests 7
4.1 nise module . 7

4.1.1 Installation . 7
4.1.2 Usage . 7
4.1.3 API Reference . 7

4.2 Additional Documentation . 19

5 License 21

6 Indices and tables 23

Python Module Index 25

Index 27

i

ii

CHAPTER

ONE

ABOUT

The nise module provides a Python API for NI Switch Executive. The code is maintained in the Open Source repository
for nimi-python.

1.1 Support Policy

nise supports all the Operating Systems supported by NI Switch Executive.

It follows Python Software Foundation support policy for different versions of CPython.

1

https://github.com/ni/nimi-python
https://devguide.python.org/#status-of-python-branches

NI Switch Executive Python API Documentation, Release 1.4.7

2 Chapter 1. About

CHAPTER

TWO

CONTRIBUTING

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions.

3

https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md

NI Switch Executive Python API Documentation, Release 1.4.7

4 Chapter 2. Contributing

CHAPTER

THREE

SUPPORT / FEEDBACK

For support specific to the Python API, follow the processs in Bugs / Feature Requests. For support with hardware, the
driver runtime or any other questions not specific to the Python API, please visit NI Community Forums.

5

https://forums.ni.com/

NI Switch Executive Python API Documentation, Release 1.4.7

6 Chapter 3. Support / Feedback

CHAPTER

FOUR

BUGS / FEATURE REQUESTS

To report a bug or submit a feature request specific to Python API, please use the GitHub issues page.

Fill in the issue template as completely as possible and we will respond as soon as we can.

4.1 nise module

4.1.1 Installation

As a prerequisite to using the nise module, you must install the NI Switch Executive runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI Switch Executive) can be installed with pip:

$ python -m pip install nise~=1.4.7

4.1.2 Usage

The following is a basic example of using the nise module to open a session to a Switch Executive Virtual Device and
connect a routegroup.

import nise
with nise.Session('SwitchExecutiveExample') as session:

session.connect('DIOToUUT')

Other usage examples can be found on GitHub.

4.1.3 API Reference

Session

class nise.Session(self , virtual_device_name, options={})
Opens a session to a specified NI Switch Executive virtual device. Opens communications with all of the IVI
switches associated with the specified NI Switch Executive virtual device. Returns a session handle that you use
to identify the virtual device in all subsequent NI Switch Executive method calls. NI Switch Executive uses a
reference counting scheme to manage open session handles to an NI Switch Executive virtual device. Each call to
nise.Session.__init__() must be matched with a subsequent call to nise.Session.close(). Successive
calls to nise.Session.__init__()with the same virtual device name always returns the same session handle.
NI Switch Executive disconnects its communication with the IVI switches after all session handles are closed to

7

https://github.com/ni/nimi-python/issues
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip
https://github.com/ni/nimi-python/tree/master/src/nise/examples

NI Switch Executive Python API Documentation, Release 1.4.7

a given virtual device. The session handles may be used safely in multiple threads of an application. Sessions
may only be opened to a given NI Switch Executive virtual device from a single process at a time.

Parameters

• virtual_device_name (str) – The name of the NI Switch Executive virtual device.

• options (dict) – Specifies the initial value of certain properties for the session. The syntax
for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

Methods

close

nise.Session.close()

Reduces the reference count of open sessions by one. If the reference count goes to 0, the method
deallocates any memory resources the driver uses and closes any open IVI switch sessions. After
calling the nise.Session.close() method, you should not use the NI Switch Executive virtual
device again until you call nise.Session.__init__().

Note: This method is not needed when using the session context manager

connect

nise.Session.connect(connect_spec, multiconnect_mode=nise.MulticonnectMode.DEFAULT ,
wait_for_debounce=True)

Connects the routes specified by the connection specification. When connecting, it may allow for
multiconnection based on the multiconnection mode. In the event of an error, the call to nise.
Session.connect() will attempt to undo any connections made so that the system will be left in
the same state that it was in before the call was made. Some errors can be caught before manipulat-
ing hardware, although it is feasible that a hardware call could fail causing some connections to be
momentarily closed and then reopened. If the wait for debounce parameter is set, the method will
not return until the switch system has debounced.

Parameters

8 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

NI Switch Executive Python API Documentation, Release 1.4.7

• connect_spec (str) – String describing the connections to be made. The route
specification strings are best summarized as a series of routes delimited by amper-
sands. The specified routes may be route names, route group names, or fully speci-
fied route paths delimited by square brackets. Some examples of route specification
strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0-
>B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specifica-
tion Strings in the NI Switch Executive Help for more information.

• multiconnect_mode (nise.MulticonnectMode) – This value sets the con-
nection mode for the method. The mode might be one of the following:
NISE_VAL_USE_DEFAULT_MODE (-1) - uses the mode selected as the default for the
route in the NI Switch Executive virtual device configuration. If a mode has not
been selected for the route in the NI Switch Executive virtual device, this parame-
ter defaults to NISE_VAL_MULTICONNECT_ROUTES. NO_MULTICONNECT (0) - routes
specified in the connection specification must be disconnected before they can be
reconnected. Calling Connect on a route that was connected using No Multiconnect
mode results in an error condition. NISE_VAL_MULTICONNECT_ROUTES (1)- routes
specified in the connection specification can be connected multiple times. The first
call to Connect performs the physical hardware connection. Successive calls to Con-
nect increase a connection reference count. Similarly, calls to Disconnect decrease
the reference count. Once it reaches 0, the hardware is physically disconnected. Mul-
ticonnecting routes applies to entire routes and not to route segments.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

• wait_for_debounce (bool) – Waits (if true) for switches to debounce between
its connect and disconnect operations. If false, it immediately begins the second
operation after completing the first. The order of connect and disconnect operation
is set by the Operation Order input.

connect_and_disconnect

nise.Session.connect_and_disconnect(connect_spec, disconnect_spec,
multiconnect_mode=nise.MulticonnectMode.DEFAULT ,
operation_order=nise.OperationOrder.AFTER,
wait_for_debounce=True)

Connects routes and disconnects routes in a similar fashion to nise.Session.connect() and
nise.Session.disconnect() except that the operations happen in the context of a single method
call. This method is useful for switching from one state to another state. nise.Session.
connect_and_disconnect()manipulates the hardware connections and disconnections only when
the routes are different between the connection and disconnection specifications. If any routes are
common between the connection and disconnection specifications, NI Switch Executive determines
whether or not the relays need to be switched. This functionality has the distinct advantage of in-
creased throughput for shared connections, because hardware does not have to be involved and po-
tentially increases relay lifetime by decreasing the number of times that the relay has to be switched.
In the event of an error, the call to nise.Session.connect_and_disconnect() attempts to undo
any connections made, but does not attempt to reconnect disconnections. Some errors can be caught
before manipulating hardware, although it is feasible that a hardware call could fail causing some
connections to be momentarily closed and then reopened.

Parameters

4.1. nise module 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

NI Switch Executive Python API Documentation, Release 1.4.7

• connect_spec (str) – String describing the connections to be made. The route
specification strings are best summarized as a series of routes delimited by amper-
sands. The specified routes may be route names, route group names, or fully speci-
fied route paths delimited by square brackets. Some examples of route specification
strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0-
>B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specifica-
tion Strings in the NI Switch Executive Help for more information.

• disconnect_spec (str) – String describing the disconnections to be made. The
route specification strings are best summarized as a series of routes delimited by am-
persands. The specified routes may be route names, route group names, or fully spec-
ified route paths delimited by square brackets. Some examples of route specification
strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0-
>B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specifica-
tion Strings in the NI Switch Executive Help for more information.

• multiconnect_mode (nise.MulticonnectMode) – This value sets the con-
nection mode for the method. The mode might be one of the following:
NISE_VAL_USE_DEFAULT_MODE (-1) - uses the mode selected as the default for the
route in the NI Switch Executive virtual device configuration. If a mode has not
been selected for the route in the NI Switch Executive virtual device, this parame-
ter defaults to NISE_VAL_MULTICONNECT_ROUTES. NO_MULTICONNECT (0) - routes
specified in the connection specification must be disconnected before they can be
reconnected. Calling Connect on a route that was connected using No Multiconnect
mode results in an error condition. NISE_VAL_MULTICONNECT_ROUTES (1) - routes
specified in the connection specification can be connected multiple times. The first
call to Connect performs the physical hardware connection. Successive calls to Con-
nect increase a connection reference count. Similarly, calls to Disconnect decrease
the reference count. Once it reaches 0, the hardware is physically disconnected. This
behavior is slightly different with SPDT relays. For more information, refer to the
Exclusions and SPDT Relays topic in the NI Switch Executive Help. Multiconnect-
ing routes applies to entire routes and not to route segments.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

• operation_order (nise.OperationOrder) – Sets the order of the operation for
the method. Defined values are Break Before Make and Break After Make. BEFORE
(1) - The method disconnects the routes specified in the disconnect specification be-
fore connecting the routes specified in the connect specification. This is the typical
mode of operation. AFTER (2) - The method connects the routes specified in the
connection specification before connecting the routes specified in the disconnection
specification. This mode of operation is normally used when you are switching cur-
rent and want to ensure that a load is always connected to your source. The order of
operation is to connect first or disconnect first.

• wait_for_debounce (bool) – Waits (if true) for switches to debounce between
its connect and disconnect operations. If false, it immediately begins the second
operation after completing the first. The order of connect and disconnect operation
is set by the Operation Order input.

10 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

NI Switch Executive Python API Documentation, Release 1.4.7

disconnect

nise.Session.disconnect(disconnect_spec)
Disconnects the routes specified in the Disconnection Specification. If any of the specified routes
were originally connected in a multiconnected mode, the call to nise.Session.disconnect() re-
duces the reference count on the route by 1. If the reference count reaches 0, it is disconnected. If
a specified route does not exist, it is an error condition. In the event of an error, the call to nise.
Session.disconnect() continues to try to disconnect everything specified by the route specifica-
tion string but reports the error on completion.

Parameters
disconnect_spec (str) – String describing the disconnections to be made. The route
specification strings are best summarized as a series of routes delimited by ampersands.
The specified routes may be route names, route group names, or fully specified route
paths delimited by square brackets. Some examples of route specification strings are:
MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute
& MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specification Strings in the
NI Switch Executive Help for more information.

disconnect_all

nise.Session.disconnect_all()

Disconnects all connections on every IVI switch device managed by the NISE session reference
passed to this method. nise.Session.disconnect_all() ignores all multiconnect modes. Call-
ing nise.Session.disconnect_all() resets all of the switch states for the system.

expand_route_spec

nise.Session.expand_route_spec(route_spec, expand_action=nise.ExpandAction.ROUTES,
expanded_route_spec_size=[1024])

Expands a route spec string to yield more information about the routes and route groups within the
spec. The route specification string returned from nise.Session.expand_route_spec() can
be passed to other Switch Executive API methods (such as nise.Session.connect(), nise.
Session.disconnect(), and nise.Session.connect_and_disconnect()) that use route
specification strings.

Parameters

• route_spec (str) – String describing the routes and route groups to expand. The
route specification strings are best summarized as a series of routes delimited by am-
persands. The specified routes may be route names, route group names, or fully spec-
ified route paths delimited by square brackets. Some examples of route specification
strings are: MyRoute MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0-
>B] MyRoute & MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specifica-
tion Strings in the NI Switch Executive Help for more information.

• expand_action (nise.ExpandAction) – This value sets the expand action for the
method. The action might be one of the following: ROUTES (0) - expands the route
spec to routes. Converts route groups to their constituent routes. PATHS (1) - expands
the route spec to paths. Converts routes and route groups to their constituent square
bracket route spec strings. Example: [Dev1/c0->Dev1/r0->Dev1/c1]

4.1. nise module 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

NI Switch Executive Python API Documentation, Release 1.4.7

• expanded_route_spec_size (list of int) – The routeSpecSize is an ViInt32
that is passed by reference into the method. As an input, it is the size of the route
spec string buffer being passed. If the route spec string is larger than the string buffer
being passed, only the portion of the route spec string that can fit in the string buffer
is copied into it. On return from the method, routeSpecSize holds the size required
to hold the entire route spec string. Note that this size may be larger than the buffer
size as the method always returns the size needed to hold the entire buffer. You
may pass NULL for this parameter if you are not interested in the return value for
routeSpecSize and routeSpec.

Return type
str

Returns
The expanded route spec. Route specification strings can be directly passed to
nise.Session.connect(), nise.Session.disconnect(), or nise.Session.
connect_and_disconnect() Refer to Route Specification Strings in the NI Switch
Executive Help for more information. You may pass NULL for this parameter if you are
not interested in the return value. To obtain the route specification string, you should
pass a buffer to this parameter. The size of the buffer required may be obtained by call-
ing the method with NULL for this parameter and a valid ViInt32 to routeSpecSize.
The routeSpecSize will contain the size needed to hold the entire route specification
(including the NULL termination character). Common operation is to call the method
twice. The first time you call the method you can determine the size needed to hold the
route specification string. Allocate a buffer of the appropriate size and then re-call the
method to obtain the entire buffer.

find_route

nise.Session.find_route(channel1, channel2, route_spec_size=[1024])
Finds an existing or potential route between channel 1 and channel 2. The returned route spec-
ification contains the route specification and the route capability determines whether or not the
route existed, is possible, or is not possible for various reasons. The route specification string re-
turned from nise.Session.find_route() can be passed to other Switch Executive API meth-
ods (such as nise.Session.connect(), nise.Session.disconnect(), and nise.Session.
connect_and_disconnect()) that use route specification strings.

Parameters

• channel1 (str) – Channel name of one of the endpoints of the route to find. The
channel name must either be a channel alias name or a name in the device/ivichannel
syntax. Examples: MyChannel Switch1/R0

• channel2 (str) – Channel name of one of the endpoints of the route to find. The
channel name must either be a channel alias name or a name in the device/ivichannel
syntax. Examples: MyChannel Switch1/R0

• route_spec_size (list of int) – The routeSpecSize is an ViInt32 that is
passed by reference into the method. As an input, it is the size of the route string
buffer being passed. If the route string is larger than the string buffer being passed,
only the portion of the route string that can fit in the string buffer is copied into it.
On return from the method, routeSpecSize holds the size required to hold the entire
route string. Note that this size may be larger than the buffer size as the method
always returns the size needed to hold the entire buffer. You may pass NULL for
this parameter if you are not interested in the return value for routeSpecSize and
routeSpec.

12 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

NI Switch Executive Python API Documentation, Release 1.4.7

Return type

tuple (route_spec, path_capability)

WHERE

route_spec (str):

The fully specified route path complete with delimiting square brackets if the
route exists or is possible. An example of a fully specified route string is: [A-
>Switch1/r0->B] Route specification strings can be directly passed to nise.
Session.connect(), nise.Session.disconnect(), or nise.Session.
connect_and_disconnect() Refer to Route Specification Strings in the NI
Switch Executive Help for more information. You may pass NULL for this pa-
rameter if you are not interested in the return value. To obtain the route speci-
fication string, you should pass a buffer to this parameter. The size of the buffer
required may be obtained by calling the method with NULL for this parameter and
a valid ViInt32 to routeSpecSize. The routeSpecSize will contain the size needed
to hold the entire route specification (including the NULL termination character).
Common operation is to call the method twice. The first time you call the method
you can determine the size needed to hold the route specification string. Allocate
a buffer of the appropriate size and then re-call the method to obtain the entire
buffer.

path_capability (nise.PathCapability):

The return value which expresses the capability of finding a valid route between
Channel 1 and Channel 2. Refer to the table below for value descriptions. You may
pass NULL for this parameter if you are not interested in the return value. Route
capability might be one of the following: Path Available (1) A path between chan-
nel 1 and channel 2 is available. The route specification parameter returns a string
describing the available path. Path Exists (2) A path between channel 1 and chan-
nel 2 already exists. The route specification parameter returns a string describing
the existing path. Path Unsupported (3) There is no potential path between chan-
nel 1 and channel 2 given the current configuration. Resource In Use (4) There is
a potential path between channel 1 and channel 2, although a resource needed to
complete the path is already in use. Source Conflict (5) Channel 1 and channel 2
cannot be connected because their connection would result in an exclusion viola-
tion. Channel Not Available (6) One of the channels is not useable as an endpoint
channel. Make sure that it is not marked as a reserved for routing. Channels Hard-
wired (7) The two channels reside on the same hardwire. An implicit path already
exists.

get_all_connections

nise.Session.get_all_connections(route_spec_size=[1024])
Returns the top-level connected routes and route groups. The route specification string returned
from nise.Session.get_all_connections() can be passed to other Switch Executive API
methods (such as nise.Session.connect(), nise.Session.disconnect(), nise.Session.
connect_and_disconnect(), and nise.Session.expand_route_spec()) that use route spec-
ification strings.

Parameters
route_spec_size (list of int) – The routeSpecSize is an ViInt32 that is passed
by reference into the method. As an input, it is the size of the route spec string buffer
being passed. If the route spec string is larger than the string buffer being passed, only

4.1. nise module 13

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

NI Switch Executive Python API Documentation, Release 1.4.7

the portion of the route spec string that can fit in the string buffer is copied into it. On
return from the method, routeSpecSize holds the size required to hold the entire route
spec string. Note that this size may be larger than the buffer size as the method always
returns the size needed to hold the entire buffer. You may pass NULL for this parameter
if you are not interested in the return value for routeSpecSize and routeSpec.

Return type
str

Returns
The route spec of all currently connected routes and route groups. Route spec-
ification strings can be directly passed to nise.Session.connect(), nise.
Session.disconnect(), nise.Session.connect_and_disconnect(), or
nise.Session.expand_route_spec() Refer to Route Specification Strings in
the NI Switch Executive Help for more information. You may pass NULL for this
parameter if you are not interested in the return value. To obtain the route specification
string, you should pass a buffer to this parameter. The size of the buffer required may
be obtained by calling the method with NULL for this parameter and a valid ViInt32
to routeSpecSize. The routeSpecSize will contain the size needed to hold the entire
route specification (including the NULL termination character). Common operation
is to call the method twice. The first time you call the method you can determine the
size needed to hold the route specification string. Allocate a buffer of the appropriate
size and then re-call the method to obtain the entire buffer.

is_connected

nise.Session.is_connected(route_spec)
Checks whether the specified routes and routes groups are connected. It returns true if connected.

Parameters
route_spec (str) – String describing the connections to check. The route specifica-
tion strings are best summarized as a series of routes delimited by ampersands. The
specified routes may be route names, route group names, or fully specified route paths
delimited by square brackets. Some examples of route specification strings are: My-
Route MyRouteGroup MyRoute & MyRouteGroup [A->Switch1/r0->B] MyRoute &
MyRouteGroup & [A->Switch1/r0->B] Refer to Route Specification Strings in the NI
Switch Executive Help for more information.

Return type
bool

Returns
Returns TRUE if the routes and routes groups are connected or FALSE if they are not.

is_debounced

nise.Session.is_debounced()

Checks to see if the switching system is debounced or not. This method does not wait for debouncing
to occur. It returns true if the system is fully debounced. This method is similar to the IviSwtch
specific method.

Return type
bool

14 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI Switch Executive Python API Documentation, Release 1.4.7

Returns
Returns TRUE if the system is fully debounced or FALSE if it is still settling.

wait_for_debounce

nise.Session.wait_for_debounce(maximum_time_ms=hightime.timedelta(milliseconds=-1))
Waits for all of the switches in the NI Switch Executive virtual device to debounce. This method
does not return until either the switching system is completely debounced and settled or the max-
imum time has elapsed and the system is not yet debounced. In the event that the maximum time
elapses, the method returns an error indicating that a timeout has occurred. To ensure that all of
the switches have settled, NI recommends calling nise.Session.wait_for_debounce() after a
series of connection or disconnection operations and before taking any measurements of the signals
connected to the switching system.

Parameters
maximum_time_ms (hightime.timedelta, datetime.timedelta, or int in
milliseconds) – The amount of time to wait (in milliseconds) for the debounce to
complete. A value of 0 checks for debouncing once and returns an error if the system
is not debounced at that time. A value of -1 means to block for an infinite period of
time until the system is debounced.

Session

• Session

• Methods

– close

– connect

– connect_and_disconnect

– disconnect

– disconnect_all

– expand_route_spec

– find_route

– get_all_connections

– is_connected

– is_debounced

– wait_for_debounce

4.1. nise module 15

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI Switch Executive Python API Documentation, Release 1.4.7

Enums

Enums used in NI Switch Executive

ExpandAction

class nise.ExpandAction

ROUTES

Expand to routes

PATHS

Expand to paths

MulticonnectMode

class nise.MulticonnectMode

DEFAULT

Default

NO_MULTICONNECT

No multiconnect

MULTICONNECT

Multiconnect

OperationOrder

class nise.OperationOrder

BEFORE

Break before make

AFTER

Break after make

PathCapability

class nise.PathCapability

PATH_NEEDS_HARDWIRE

Path needs hardwire

PATH_NEEDS_CONFIG_CHANNEL

Path needs config channel

PATH_AVAILABLE

Path available

PATH_EXISTS

Path exists

16 Chapter 4. Bugs / Feature Requests

NI Switch Executive Python API Documentation, Release 1.4.7

PATH_UNSUPPORTED

Path Unsupported

RESOURCE_IN_USE

Resource in use

EXCLUSION_CONFLICT

Exclusion conflict

CHANNEL_NOT_AVAILABLE

Channel not available

CHANNELS_HARDWIRED

Channels hardwired

Exceptions and Warnings

Error

exception nise.errors.Error

Base exception type that all NI Switch Executive exceptions derive from

DriverError

exception nise.errors.DriverError

An error originating from the NI Switch Executive driver

UnsupportedConfigurationError

exception nise.errors.UnsupportedConfigurationError

An error due to using this module in an usupported platform.

DriverNotInstalledError

exception nise.errors.DriverNotInstalledError

An error due to using this module without the driver runtime installed.

DriverTooOldError

exception nise.errors.DriverTooOldError

An error due to using this module with an older version of the NI Switch Executive driver runtime.

4.1. nise module 17

NI Switch Executive Python API Documentation, Release 1.4.7

DriverTooNewError

exception nise.errors.DriverTooNewError

An error due to the NI Switch Executive driver runtime being too new for this module.

InvalidRepeatedCapabilityError

exception nise.errors.InvalidRepeatedCapabilityError

An error due to an invalid character in a repeated capability

DriverWarning

exception nise.errors.DriverWarning

A warning originating from the NI Switch Executive driver

Examples

You can download all nise examples here

nise_basic_example.py

Listing 1: (nise_basic_example.py)

1 #!/usr/bin/python
2 import argparse
3 import nise
4 import sys
5

6

7 def example(virtual_device_name, connection):
8 with nise.Session(virtual_device_name=virtual_device_name) as session:
9 session.connect(connection)

10 print(connection, ' is now connected.')
11

12

13 def _main(argsv):
14 parser = argparse.ArgumentParser(description='Connects the specified connection␣

→˓specification', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
15 parser.add_argument('-n', '--virtual-device', default='SwitchExecutiveExample', help=

→˓'NI Switch Executive Virtual Device name')
16 parser.add_argument('-c', '--connection', default='DIOToUUT', help='Connection␣

→˓Specification')
17 args = parser.parse_args(argsv)
18 example(args.virtual_device, args.connection)
19

20

21 def main():
22 _main(sys.argv[1:])

(continues on next page)

18 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/releases/download/1.4.7/nise_examples.zip
https://github.com/ni/nimi-python/blob/1.4.7/src/nise/examples/nise_basic_example.py

NI Switch Executive Python API Documentation, Release 1.4.7

(continued from previous page)

23

24

25 def test_example():
26 example('SwitchExecutiveExample', 'DIOToUUT')
27

28

29 def test_main():
30 cmd_line = []
31 _main(cmd_line)
32

33

34 if __name__ == '__main__':
35 main()
36

37

4.2 Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

Refer to the nimi-python Read the Docs project for documentation of versions 1.4.4 of the module or earlier.

4.2. Additional Documentation 19

https://nimi-python.readthedocs.io/en/stable/

NI Switch Executive Python API Documentation, Release 1.4.7

20 Chapter 4. Bugs / Feature Requests

CHAPTER

FIVE

LICENSE

nimi-python is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed under
different licenses. All licenses allow for non-commercial and commercial use.

gRPC Features

For driver APIs that support it, passing a GrpcSessionOptions instance as a parameter to Session.__init__() is subject
to the NI General Purpose EULA (see NILICENSE).

21

https://github.com/ni/nimi-python/blob/master/LICENSE
https://github.com/ni/nimi-python/blob/master/NILICENSE

NI Switch Executive Python API Documentation, Release 1.4.7

22 Chapter 5. License

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

23

NI Switch Executive Python API Documentation, Release 1.4.7

24 Chapter 6. Indices and tables

PYTHON MODULE INDEX

n
nise, 7

25

NI Switch Executive Python API Documentation, Release 1.4.7

26 Python Module Index

INDEX

A
AFTER (nise.OperationOrder attribute), 16

B
BEFORE (nise.OperationOrder attribute), 16

C
CHANNEL_NOT_AVAILABLE (nise.PathCapability at-

tribute), 17
CHANNELS_HARDWIRED (nise.PathCapability attribute),

17
close() (in module nise.Session), 8
connect() (in module nise.Session), 8
connect_and_disconnect() (in module nise.Session),

9

D
DEFAULT (nise.MulticonnectMode attribute), 16
disconnect() (in module nise.Session), 11
disconnect_all() (in module nise.Session), 11
DriverError, 17
DriverNotInstalledError, 17
DriverTooNewError, 18
DriverTooOldError, 17
DriverWarning, 18

E
Error, 17
EXCLUSION_CONFLICT (nise.PathCapability attribute),

17
expand_route_spec() (in module nise.Session), 11
ExpandAction (class in nise), 16

F
find_route() (in module nise.Session), 12

G
get_all_connections() (in module nise.Session), 13

I
InvalidRepeatedCapabilityError, 18

is_connected() (in module nise.Session), 14
is_debounced() (in module nise.Session), 14

M
module

nise, 7
MULTICONNECT (nise.MulticonnectMode attribute), 16
MulticonnectMode (class in nise), 16

N
nise

module, 7
NO_MULTICONNECT (nise.MulticonnectMode attribute),

16

O
OperationOrder (class in nise), 16

P
PATH_AVAILABLE (nise.PathCapability attribute), 16
PATH_EXISTS (nise.PathCapability attribute), 16
PATH_NEEDS_CONFIG_CHANNEL (nise.PathCapability at-

tribute), 16
PATH_NEEDS_HARDWIRE (nise.PathCapability attribute),

16
PATH_UNSUPPORTED (nise.PathCapability attribute), 16
PathCapability (class in nise), 16
PATHS (nise.ExpandAction attribute), 16

R
RESOURCE_IN_USE (nise.PathCapability attribute), 17
ROUTES (nise.ExpandAction attribute), 16

S
Session (class in nise), 7

U
UnsupportedConfigurationError, 17

W
wait_for_debounce() (in module nise.Session), 15

27

	About
	Support Policy

	Contributing
	Support / Feedback
	Bugs / Feature Requests
	nise module
	Installation
	Usage
	API Reference
	Session
	Methods
	close
	connect
	connect_and_disconnect
	disconnect
	disconnect_all
	expand_route_spec
	find_route
	get_all_connections
	is_connected
	is_debounced
	wait_for_debounce

	Enums
	ExpandAction
	MulticonnectMode
	OperationOrder
	PathCapability

	Exceptions and Warnings
	Error
	DriverError
	UnsupportedConfigurationError
	DriverNotInstalledError
	DriverTooOldError
	DriverTooNewError
	InvalidRepeatedCapabilityError
	DriverWarning

	Examples
	nise_basic_example.py

	Additional Documentation

	License
	Indices and tables
	Python Module Index
	Index

